Mutational analysis of molecular requirements for the actions of general anaesthetics at the γ-aminobutyric acidA receptor subtype, α1β2γ2
نویسندگان
چکیده
BACKGROUND Amino acids in the beta subunit contribute to the action of general anaesthetics on GABA(A) receptors. We have now characterized the phenotypic effect of two beta subunit mutations in the most abundant GABA(A) receptor subtype, alpha1beta2gamma2. RESULTS The beta2(N265M) mutation in M2 decreased the modulatory actions of propofol, etomidate and enflurane, but not of alphaxalone, while the direct actions of propofol, etomidate and alphaxalone were impaired. The beta2(M286W) mutation in M3 decreased the modulatory actions of propofol, etomidate and enflurane, but not of alphaxalone, whereas the direct action of propofol and etomidate, but not of alphaxalone, was impaired. CONCLUSIONS We found that the actions of general anaesthetics at alpha1beta2(N265M)gamma2 and alpha1beta2(M286W)gamma2 GABA(A) receptors are similar to those previously observed at alpha2beta3(N265M)gamma2 and alpha2beta3(M286W)gamma2 GABA(A) recpetors, respectively, with the notable exceptions that the direct action of propofol was decreased in alpha1beta2(M286W)gamma2 receptors but indistinguishable form wild type in alpha2beta3(M286W)gamma2 receptors and that the direct action of alphaxalone was decreased in alpha1beta2(N265M)gamma2 but not alpha2beta3(N265M)gamma2 receptors and indistinguishable form wild type in alpha1beta2(M286W)gamma2 receptors but increased in alpha2beta3(M286W)gamma2 receptors. Thus, selected phenotypic consequences of these two mutations are GABA(A) receptor subtype-specific.
منابع مشابه
Mutational analysis of molecular requirements for the actions of general anaesthetics at the gamma-aminobutyric acidA receptor subtype, alpha1beta2gamma2
BACKGROUND: Amino acids in the beta subunit contribute to the action of general anaesthetics on GABA(A) receptors. We have now characterized the phenotypic effect of two beta subunit mutations in the most abundant GABA(A) receptor subtype, alpha1beta2gamma2. RESULTS: The beta2(N265M) mutation in M2 decreased the modulatory actions of propofol, etomidate and enflurane, but not of alphaxalone, wh...
متن کاملSpinally mediated analgesic interaction between γ-aminobutyric acid B receptor agonist and glutamate receptor antagonists in rats
Background. Many mechanisms are involved in pain transmission in the spinal cord. Therefore, combination of drugs acting on different kinds of mechanisms might be useful for analgesia. We investigated the interaction betweenγ-aminobutyric acid (GABA)B receptor agonist, baclofen, and N-methyl-D-aspartate (NMDA) receptor antagonist, AP-5, orα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid ...
متن کاملPropofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats
Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signal...
متن کاملP145: The Role of γ-Aminobutyric Acid Receptor in The Social Anxiety Disorder
Social anxiety disorder (SAD) is the one of the most common anxiety disorders. Despite its high prevalence, the disorder is still considerably undiagnosed and untreated. The disease places a massive burden on patient’s lives, affecting not only their social interactions but also their educational and professional activities, thereby constituting a severe disability. γ-aminobutyric acid (GABA) s...
متن کاملEugenol Inhibits the GABAA Current in Trigeminal Ganglion Neurons
Eugenol has sedative, antioxidant, anti-inflammatory, and analgesic effects, but also serves as an irritant through the regulation of a different set of ion channels. Activation of gamma aminobutyric acid (GABA) receptors on sensory neurons leads to the stabilization of neuronal excitability but contributes to formalin-induced inflammatory pain. In this study, we examined the effect of eugenol ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Pharmacology
دوره 3 شماره
صفحات -
تاریخ انتشار 2003